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Constraint method for deriving nonequilibrium molecular dynamics equations of motion
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A procedure for developing non-Hamiltonian equations of motion for constrained systems is given. It is
shown that such constraints can be used to mimic common statistical systems, both equilibrium~e.g., constant
temperature! and nonequilibrium~e.g., shear flow, heat flow!, and the procedure is suited for molecular
dynamics computer simulations. The method is demonstrated with isokinetic shear flow, in bulk and slit
geometries, which illustrates its flexibility. Results for the shear viscosity are in agreement with previously
published results.
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I. INTRODUCTION

Molecular dynamics computer simulations are being u
to describe increasingly complex systems@1#. Originally re-
stricted to a constant energy isolated system~microcanonical
system! molecular dynamics has since been used for cons
temperature@2# and constant pressure@3# equilibrium sys-
tems, as well as in a variety of nonequilibrium applicatio
@4#. Such embellishments necessarily invoke no
Hamiltonian equations of motion, and this raises fundam
tal questions about the status of the approaches and the
ture of the statistical distribution generated by t
consequent trajectory. Further, the equations of motion t
to bead hocin the sense that they are developed specific
for the problem at hand, and there appears no fundame
principle that can be used to judge between alternative e
tions of motion or any systematic procedure that can be u
to develop equations for new systems.

This paper treats a generic class of systems that are
strained in some sense, and develops appropriate equa
of motion by invoking a geometrical principle of least co
straint. The utility of this class is that many thermodynam
systems, both equilibrium and nonequilibrium, may be mi
icked by invoking constraints on macroscopic variables.
example, a constant temperature system can be modele
one with fixed kinetic energy, which leads to the isokine
thermostat@4–6#. Poiseuille flow can be represented by
system with constant total momentum for the confined fl
and zero momentum for the walls. Couette flow can be
tained by constraining the momentum in two halves of
system to be constant and equal and opposite. There
wide variety of systems that can be cast as constrained,
the present principle for developing non-Hamiltonian eq
tions of motion for such systems provides a systematic
unified approach to the problem.

The paper is divided into two parts. Section I derives
equations of motion for an arbitrary constraint and for a g
eral phase space metric. The equivalence of the so-ca
projected metric with Gauss’s principle of least constrain
shown, and the implementation of the method for a discr
time step is also discussed. Section II gives equations
motion for shear flow by invoking a constraint on the m
menta in the two halves of the system. Results are given
bulk and for confined Lennard-Jones fluids and it is sho
1063-651X/2002/66~4!/041207~7!/$20.00 66 0412
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that the shear viscosity obtained with the method is in agr
ment with literature values.

II. PRINCIPLE OF LEAST CONSTRAINT

A. Equations of motion

Denote the position of thei th particle byqi and its mo-
mentum bypi , so that a point in 6N-dimensional phase
space isG5(qN,pN), and the trajectory of the system
G(t). Suppose that the system is subject to a constraint,
general form of which is

g~qN,pN,t !5G, ~1!

whereG is a constant. The equations of motion for the co
strained system may be written as

q̇i5
]H
]pi

1l¹qig5q̇i
01l¹qig,

ṗi52
]H
]qi

1l¹pig5ṗi
01l¹pig, ~2!

whereH(G) is the Hamiltonian. The first terms on the righ
hand side represent the natural or unconstrained motio
the system, and the second term represents a genera
force of constraint. The constraint force is directed along
gradient to the hypersurface and as such is minimal in a l
squares metrical sense. The multiplierl is determined by the
vanishing of the time derivative of the constraint,

ġ5
]g

]t
1Ġ•¹g50. ~3!

Implicit in the above equations is the metric of pha
space. One can define constant length elementsl qi and l pi
such that scalar products have the form

G(1)
•G(2)5(

ia
F 1

l qi
2

qia
(1)qia

(2)1
1

l pi
2

pia
(1)pia

(2)G , ~4!

wherea5x, y, or z, and gradients have the form
©2002 The American Physical Society07-1
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¹ f ~G!5(
i

F l qi
2 ] f

]qi
q̂i1 l pi

2 ] f

]pi
p̂i G . ~5!

The product of the lengths has no physical consequence,
without loss of generality it can be set equal to unity,l qil pi
51. ~Alternatively, the product could be set equal
Planck’s constant.! It is the ratio of the two lengths that i
crucial ~this determines the relative importance of positi
and momentum!, and this must have the dimensions of ma
divided by time,l pi / l qi5mi /t. Accordingly one has

l qi
2 5

t

mi
, l pi

2 5
mi

t
. ~6!

The time scalet affects the direction in phase space of t
gradient to the hypersurface, but there does not appear t
any general argument to fix its value. However, it does
pear that the physical value corresponds tot→0; this limit
will be taken shortly.

With these expressions for the length scales in ph
space, the equations of motion explicitly are

q̇ia5
]H
]pia

1l
t

mi

]g

]qia
,

ṗia52
]H
]qia

1l
mi

t

]g

]pia
, ~7!

and the distance moved along the gradient is

l5H 2
]g

]t
2(

ia
F ]H
]pia

]g

]qia
2

]H
]qia

]g

]pia
G J Y

(
ia

F t

mi
S ]g

]qia
D 2

1
mi

t S ]g

]pia
D 2G . ~8!

In these general equations of motion, the forces of c
straint contribute to the velocities as well as to the accele
tions, which is arguably unphysical. This can be rectified
taking the limitt→0, in which case the equations of motio
become

q̇ia5
]H
]pia

,

ṗia52
]H
]qia

1l8mi

]g

]pia
, ~9!

and the distance factor is now

l85H 2
]g

]t
2(

ia
F ]H
]pia

]g

]qia
2

]H
]qia

]g

]pia
G J Y

(
ia

mi S ]g

]pia
D 2

. ~10!

This t→0 limit may be called the projected metric~because
it measures the length of a vector from its projection onto
hyperplane of momenta!.
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B. Gauss’s principle

The equations of motion that have the least force of c
straint in the projected metric may also be derived fro
Gauss’s principle of least constraint. This is based up
minimization of the Hertzian curvature@4#

C5
1

2 (
ia

1

mi
S ṗia1

]H
]qia

D 2

~11!

with respect to acceleration, subject to the constraint~3!.
Introducing a Lagrange multiplier, one has

05
]~C2l8ġ!

] ṗia

5
1

mi
ṗia1

1

mi

]H
]qia

2l8
]g

]pia
. ~12!

This is identical to the projected metric result, Eq.~9!.

C. Discrete time step

Molecular dynamics computer simulations necessarily
voke a discrete time step of non-zero length. Whilst th
exist methods to solve the equations of motion to high ac
racy, some numerical error is inevitable. Unfortunately, b
cause the constraint enters as a time derivative, there i
means to correct for system drift away from the hypersurf
of constraint. For example, the Gaussian thermostat ba
upon the isokinetic constraint is usually supplemented w
periodic rescaling of velocities to correct for the drift in th
kinetic temperature@1#. This rescaling is bothad hoc and
artificial and it is preferable to avoid it.

Simplectic integrators have proven efficient in minimizin
drift @7#. An alternative approach in the present formalis
for the discrete case is to allow the system to evolve from
point G(t) to the pointG(0) at timet1D t . This evolution can
be either the pure Hamiltonian natural evolution or the co
strained evolution, and the equations of motion can be sol
to as high accuracy as desired. In either caseG(0) will not be
exactly on the constraint hypersurface. However, one
move the trajectory back to the closest point on the hyp
surface by calculating successively

l (n)5
G2g~G(n21)!

¹g•¹g(n21)
~13!

and

G(n)5G(n21)1l (n)¹g. ~14!

Here the gradient of the hypersurface can be evaluated at
convenient point~e.g., G(n21)), and the appropriate metri
lengths should be used. Aftern iterations, when the trajectory
is back on the hypersurface within some specified toleran
one simply setsG(t1D t)5G(n). This method precludes drif
away from the hypersurface and avoids the need for perio
rescaling or otherad hocmoves to make the system satis
the constraints.

For the case of multiple constraints,ga(G)5Ga , a
51,2, . . . , one has tosolve the linear system of equations
7-2
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(
b

lb
(n)¹gb•¹ga

(n21)5Ga2ga
(n21), a51,2, . . . ~15!

for the l (n). Thenth estimate for the trajectory is

G(n)5G(n21)1(
a

la
(n)¹ga . ~16!

III. AN EXAMPLE: ISOKINETIC SHEAR FLOW

A. Review

As mentioned in the Introduction, constant temperat
molecular dynamics have previously been performed us
the so-called Gaussian thermostat, which constrains the
netic energy@4–6#. Other constant temperature molecu
dynamics methods include the Nose´-Hoover thermostat
@2,8,9# and stochastic methods that yield the Boltzmann d
tribution @3,10,11#.

The shear viscosity has been obtained by equilibrium m
lecular dynamics simulations using the Green-Kubo met
@12,13#. Nonequilibrium methods include driven flow with
sinusoidal profile@14#, trajectory perturbation methods@15#,
boundary driven flow@16#, including sliding brick boundary
conditions@17#, and modified equations of motion such
the DOLLS tensor@13# and the SLLOD equations~so named
because of its close relationship to the DOLLS tensor al
rithm! @18,19#. Extensive results for the shear viscosity of
Lennard-Jones fluid at its triple point exist in the literatu
@12,16,20–27#.

B. Constraints

Constrained equations of motion will now be develop
for shear flow,vx5gy, whereg is the shear rate. It remain
to specify an appropriate constraint.

One possibility would be to fix the momentum of ea
particle according to its position,pix5mgqiy . However, this
is a very strong constraint that does not allow fluctuatio
about the average velocity profile. Nor does it allow nonl
ear profiles to develop. What is required is the least c
straint that can be imposed to cause shear flow, an idea th
consistent with, but distinct from, the idea of the least co
straint force in the equations of motion.

The constraint chosen here is that the total momentum
the top half of the system is fixed, and equal and opposit
that in the bottom half of the system. That is, two constra
functions are defined,

g6~G![(
i 51

N

pixQ~6qiy!, ~17!

whereQ is the Heaviside step function. In order to achieve
shear rateg, one can see that the value of the constrain
momenta should be

g6~G!5
6gLNm

8
[6G, ~18!
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whereL is the height of the simulation cell,m is the particle
mass, andN is the number of particles. The requisite deriv
tives of the momentum hypersurfaces are

]g6

]qia
56pixd~qiy!day,

]g6

]pia
5Q~6qiy!dax , ~19!

where Kronecker and Dirac delta functions appear. T
Dirac d arises from a particle crossing the midplane, and
only contributes to the time derivatives when a particle
precisely at the midplane. In a finite-sized simulation t
probability that this occurs is negligible, and henceforth t
term will be ignored.

The shear causes the system to heat up, and so an i
netic constraint is also imposed to maintain the desired t
perature. The peculiar kinetic energy is

k~G![
1

2m (
i 51

N

p̃i•p̃i , ~20!

where the peculiar momentum is measured with respec
the local velocity profilep̃i5pi2mgqiyp̂ix . By the equipar-
tition theorem, the value of the constrained peculiar kine
energy is

k~G!5
3NkBT

2
[K, ~21!

wherekB is the Boltzmann’s constant andT is the tempera-
ture. The derivatives of the kinetic energy hypersurface a

]k

]qia
52g p̃ixday ,

]k

]pia
5

1

m
p̃ia . ~22!

In view of these expressions, the constrained equation
motion are

q̇ia5
]H
]pia

2
t2

m
l8g p̃ixday , ~23!

ṗia5
2]H
]qia

1m@l18 Q~qiy!dax1l28 Q~2qiy!dax

1l8p̃ia /m#. ~24!

It is tedious but straightforward to show that the distanc
are

l68 52
ṗx

061l8p̃x
6

mN6
~25!

and

l85
mN1N2k̇02N2p̃x

1ṗx
012N1p̃x

2ṗx
02

N2~ p̃x
1!21N1~ p̃x

2!222N1N2k
. ~26!

HereN6 and p̃x
6 are the number of atoms and the pecul

momentum in the respective halves of the system, and
natural rate of change of momentum and of peculiar kine
7-3
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energy are ṗx
065( i ṗix

0 Q(6qiy) and k̇05( iap̃ia@ ṗia
0 /m

2gq̇iy
0 dax#, respectively. Note that the constraint force a

ing on the rate of change of position is quadratic in the ti
scalet, and that acting on the rate of change of moment
is independent oft.

In the actual simulations, the discrete equations of mot
for multiple constraints, Eqs~15! and ~16!, were used. The
explicit formulas can be obtained using an analysis simila
the above. The equations were iterated successively
convergence. This iteration procedure guarantees that
system returns to the constraint hypersurface after each fi
time step, and there was no need for the periodic velo
rescaling that is used with the usual implementation of
isokinetic method.

C. Simulation details and results

1. Homogeneous system

The geometric constraint technique for isokinetic sh
flow was implemented in a homogeneous system using L
Edwards boundaries@17#. Argon at the triple point (T
50.722e/kB ,r50.8442s23) was chosen because there h
been a large amount of data published for this sys
@12,16,20–27#. Heree is the energy parameter ands is the
length parameter that appear in the Lennard-Jones pair
tential. The central cell contained 125 atoms. For shear r
of g* 50.5, . . . ,1, where g* 5g(ms2/e)1/2, simulations
were run for 200 000 steps with an integration time step
Dt* 50.0015, whereDt* 5Dt(e/ms2)1/2. For shear rates o
g* 50.1, . . .,0.4, simulations were run for 400 000 ste
with a time stepDt* 50.0024. A fifth-order Gear predictor
corrector scheme was used, and excellent agreement
past results was obtained for the shear viscosity. Below t
are compared with the results of Heyes@25#, who used the
SLLOD equations of motion with Lees-Edwards boundar
and a Gaussian isokinetic thermostat. The viscosity was
termined in the usual manner from the ratio of the str
tensor to the shear rate. The dimensionless viscosity ish*
5hs2/(me)1/2.

The momentum constraints, in combination with t
Lees-Edwards boundary conditions and the isokinetic th
mostat on the peculiar momentum, were found to produc
linear velocity profile with the desired shear rate. It can
seen from Fig. 1 that the shear thinning at high shear rate

FIG. 1. Shear viscosity curve for a homogeneous system u
the present geometric technique~gray circles!, compared to the
SLLOD results from Heyes~black diamonds! @25#. The standard
error is indicated where the error bars are larger than the symb
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correctly captured by the present method. For shear r
g* .0.1, the results are in extremely good agreement w
Heyes @25#. The larger error at low shear, which is com
monly observed, is due to the low signal to noise ratio
such low shear rates. The large viscosity gradient at
shear rates also contributes to this error, because any e
or fluctuations in the shear rate will cause a correspondin
large variation in viscosity. The agreement of these res
with those previously published for the SLLOD case
promising and indicates that the new equations of motion
not effect the flow adversely.

Only the ratio of the coordinate and momentum metric
significant, and from Eq.~6! this ratio is l q

2/ l p
25t2/m2. The

time constantt for the metric was taken as the time stepDt
used in the computer implementation of the constraint eq
tions. That is,t* 50.0015 forg* ,0.4. In practice this natu-
ral metric based on molecular parameters is effectively
projected metric mentioned previously because there is
tually no change to the positions due to the constraint for
To investigate the effect of changing the metric, simulatio
were carried out witht* multiplied by a factor of 1028. This
caused a change in the positions in the fifth decimal place
a shear rate ofg* 51. Any multiplier larger than this even
tually caused the coordinates to change too greatly an
produce an unsatisfactory energy due to particle over
This shows that a large change in the natural metric is
quired to move away from the projected metric. The visc
ity for this nonprojected metric for shear ratesg*
50.1, . . . ,0.4 is invery good agreement with the natur
metric results, changing by less than 3% in each case.

The advantage of the constraint technique is that the
tem returns to the constant temperature and momentum~for
each half! hypersurface for every time step. This was o
served in practice, the temperature and the total momen
in each half remained constant and at the initially chos
value throughout the simulation. Velocity rescaling w
never required. One may conclude that this constraint te
nique for finite time steps is a viable alternative to the co
tinuum Gaussian thermostat as a temperature con
method.

2. Inhomogeneous system

The results in Fig. 1 do not provide an unambiguous t
of the constraint method for shear flow. It is well known th
Lees-Edwards periodic boundaries alone have the ability
produce homogeneous shear and the peculiar definitio
velocity required for temperature control~biased thermostat!
also influences momentum flow@28#. So whilst the new
equations cause no evident damage, because of these
tional effects it cannot be concluded that the new equati
themselves are producing the shear flow.

To determine whether the geometric method has the a
ity to produce shear flow independently of Lees-Edwa
boundaries, these boundaries were removed and repl
with uniform walls in thexz plane. The wall potential was
v(y)54e(s/z)12, wherez is the distance of the center of th
atom from the wall. This is the repulsive part of the Lenna
Jones potential, and it prevents atoms from leaving the si
lation cell. The wall position was located at a distancer21/3

g

ls.
7-4
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beyond the two boundaries aty56L/2. This value was cho-
sen so that the density of atoms in the simulation cell w
close to the triple point density of argon. The periodic boun
aries in thex andz direction remain unchanged. A cubic ce
was used. Simulations were run for 200 000 steps, wit
time step ofDt* 50.0024, for 1000 particles.

To remove the effect of the profile-biased thermostat,
peculiar momentum of particles was based on the meas
velocity profile in the shear direction~unbiased local thermo
stat! @28#. This also allows the effects of inhomogeneity a
confinement on nonlinear velocity profiles to be explored

As Fig. 2 shows, the resulting density profile is oscilla
ing, which indicates a degree of ordering of the liquid in
layers parallel to the plane of the potential boundary. Thi
a property of liquids confined between molecularly smo
solid boundaries@29#, as was confirmed here by comparis
with the prominent ordering observed in an equilibriu
simulation that was also conducted. The velocity profile
Fig. 2 in the direction of the velocity gradient was nonline
with the gradient vanishing at the walls. The homogene
velocity gradient for the same shear is also shown. The c
straint guarantees that the area between the two velo
curves above the linear curve must equal that below the
ear curve. This along with the vanishing of the gradient
the velocity profile at the walls results in a sharper gradi
in the center. There was no correlation of the local veloc
with the oscillating density profile.

It is expected that the nonuniformity in the velocity gr
dient is a phenomenon of the stationary smooth wall rat

FIG. 2. Schematic of the potential wall system for a shear rat
0.2, showing nonlinear density~solid diamonds!, velocity ~solid
circles!, idealized velocity~straight line!, and the local temperatur
~open diamonds!.
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than the geometric equations of motion. The present po
tial wall corresponds to a completely nonwetting interfac
and so complete slip could be expected. This is likely to
the cause of the vanishing of the velocity gradient at
boundary, due to the absence of any interaction with w
atoms. Such a lack of atomic interactions prevents the sh
ing of the fluid atoms near the boundary.

Interestingly the temperature profile is parabolic, bei
higher in the center by around 10%. This can be explained
larger heat production caused by the higher shear rate in
central region~the larger velocity gradient shown in Fig. 2!.
The heat is removed at an equal rate over the simulation
by using a single Lagrange multiplier throughout, and so
central region is too hot, and the perimeter is too cold,
compared to the nominal temperature ofT* 50.722.

The slip behavior between the wall and the fluid atoms
a natural phenomenon observed in confined systems,
experimentally@30–32# and in computer simulations@33–
35#. The present nonlinear velocity profile is an extreme e
ample of such slippage, and it is a strength of the method
the geometric equations allow such a nonlinear profile
develop in this system. It would be difficult to realize th
situation physically~because ordinarily shear flow is drive
by the boundaries, and it would require a spatially inhom
geneous body force acting on the fluid to cause the pre
flow!. Nevertheless, given shear flow and the noninterac
boundaries, such a nonlinear profile is realistic. The pres
approach shows the behavior of the fluid and the form of
slippage for this model flow.

A linear region was observed in the center of the cell
shear ratesg* ,0.5. Using the stress tensor, the shear r
and viscosity were calculated in this linear region, and
results are shown in Table I. The value of the shear visco
deduced for the inhomogeneous system agrees well with
obtained for the homogeneous system discussed above~Fig.
1!. This confirms that the fluid is behaving as expected a
that the equations of motion are producing the correct fl
response under the present conditions.

The flexibility of the constraint technique allows altern
tive implementations of the isokinetic shear flow equatio
One possibility is to constrain the momentum of the fluid
a region at the outer edges of the simulation cell on
thereby shearing the intervening fluid. Each of the two co
strained fluid regions was set at approximately one molec

f

ous
eneous
TABLE I. Viscosity given by SLLOD@25#, compared with that obtained here for the homogene
system with the natural and the exaggerated metric, and with the results from the two inhomog
systems, the potential wall, and the constrained fluid boundary. Hereg* is the nominal shear rate andgm* is
the measured shear rate in the center. The error in the last digit is given in the parentheses.

SLLOD @25# Homogeneous Wall Constrained boundary
t5Dt t51028Dt

g* h* h* h* gm* h* gm* h*

0.1 2.93~8! 3.08~27! 3.17~9! 0.10 3.33~3!

0.2 2.84~9! 2.86~11! 2.91~7! 0.20 3.07~0!

0.3 2.71~2! 2.67~7! 2.67~3! 0.28 2.86~0! 0.30 2.80~0!

0.4 2.56~2! 2.54~8! 2.54~3! 0.44 2.40~0! 0.40 2.64~0!

0.5 2.42~1! 2.43~7! 2.44~2! 0.51 2.46~1!
7-5
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T. M. GALEA AND P. ATTARD PHYSICAL REVIEW E 66, 041207 ~2002!
diameter, or 10% of the cell. This is similar to the fluid-wa
method of Ashurst and Hoover@16#. However in the presen
case, fluid atoms are allowed to mix with the constrain
fluid, in contrast to the method of Ashurst and Hoover wh
continuity is broken with an elastically reflecting boundary
the interface of the fluid and the fluid wall. An oscillatin
density profile is apparent again, as Fig. 3 shows.~Note that
the uniform wall potential discussed in conjunction with t
preceding figure was also present.! The velocity profile is
nonlinear only in the constrained boundary region, with
velocity gradient vanishing at the wall once again. The
locity profile in the nonconstrained region is quite linear, a
the actual shear rate is close to the ideal shear rate set b
boundaries. The viscosity obtained for boundary shear r
of 0.1–0.5 are shown in Table I. It can be seen that
results are again in close agreement with the homogen
results, which confirms the reliability of the equations
motion that result from the geometric principle of least co
straint, and the flexibility of the constrained macrosco
variable approach.

IV. DISCUSSION

In developing non-Hamiltonian equations of motion
describe different thermodynamic systems, it is desirable
perturb the natural motion of the system as little as possi
This requirement was implemented in the present pape
two ways. First a geometric principle of least constraint w
analyzed. This gave the minimal additional force necess
to restrict the motion in phase space to a given constr
hypersurface. Results were given for both a general me
and a projected metric. The latter, it was argued, was
physically relevant case because the forces of constraint w

FIG. 3. Results for the boundary driven system for a shear
of 0.2, showing density~solid diamonds!, velocity ~solid circles!,
idealized velocity profile~straight line, obscured!, and the tempera-
ture ~open diamonds!. Dashed vertical lines represent the bounda
of the constrained fluid region.
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projected onto the momentum hyperplane, as one would
pect for real forces. In this case the geometrical princi
became equivalent to Gauss’s principle of least constra
Using the molecular measure of time was found to be pr
tically equivalent to the projected metric.

Second, the constraints that were imposed were also m
mal. In the case of shear flow, two constraints were impos
These fixed the total momentum in each half of the system
be equal and opposite, which is obviously much less rest
tive than, for example, fixing the momentum everywhere
was shown that a variety of flow patterns could develo
consistent with these two constraints. The general appro
of constraining macroscopic conserved variables in differ
regions appears to offer the minimal solution to a variety
different nonequilibrium flows.

Specific results for shear flow were obtained to illustra
the present approach. The homogeneous results indicate
the supplementary forces from the geometric technique
not disturbing the system. The inhomogeneous meth
show that the technique alone is capable of producing sh
flow within the system. This technique also allows nonline
velocity profiles to develop when they might not have be
anticipated beforehand~e.g., the present results for the flu
confined by a potential wall!. Advantages of the presen
method over other techniques are the following.

~1! The velocity profile is not assumed.
~2! The constraints are satisfied exactly at every time s

and hence there is no need for velocity rescaling.
~3! There is minimal perturbation of the natural motion

the system.
~4! The technique is flexible, since it allows choice in th

constraining factors, and the constraints may be applied to
or part of the fluid.

~5! The methods gives a well-defined and unambiguo
recipe for developing equations of motion for different sit
ations.

For the problem of homogeneous shear flow, the pres
method is of similar computational efficiency to the SLLO
equations and to the other nonequilibrium approaches
shear flow that are already in the literature@13–19#. The real
advantage of the present approach is that it provides a
principles method for deriving equations of motion for ge
eral classes of flow. For example, momentum constra
could be used for Couette flow of complex fluids and f
Poiseuille flow of confined fluids, and energy constrain
could be used to simulate heat flow. The fact that the al
rithm works in the present simple case of shear flow in
cates that it can likely be applied more broadly.
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